Graph: Paths and Cycles

- Path
- Cycle
- Simple Path
- Simple Cycle
- Reachable
- Reachable Paths

Graph: Subgraphs and Spanning Subgraphs

Graph: Subgraphs and Spanning Subgraphs

Formulate a condition of a graph G' = (V', E') that is a subgraph, but <u>not</u> a spanning subgraph, of G = (V, E).

Graph: Connected Graph

Is a **spanning** subgraph also **connected** subgraph?

Hint:

Graph: Connected Components

How many connected components does the graph have?

Graph: Forests and Trees

Graph: Spanning Trees

Graph: Exercises

Properties: Structure vs. |V| and |E|

Given
$$G = (V, G)$$
 an **undirected** graph with $|V| = n$, $|E| = m$:

$$m = n - 1$$
 if G is a spanning tree $m \le n - 1$ if G is a forest $m \ge n - 1$ if G is connected $m \ge n$ if G contains a cycle

Properties: Structure vs. |V| and |E|

Given
$$G = (V, G)$$
 an undirected graph with $|V| = n$, $|E| = m$:
$$\begin{cases}
m = n - 1 & \text{if G is a } spanning \text{ tree} \\
m \le n - 1 & \text{if G is a } forest \\
m \ge n - 1 & \text{if G is } connected \\
m \ge n & \text{if G contains a } cycle
\end{cases}$$